Math 202 - Final (Summer 10)

T. Tlas

- Please answer question 4 on the same sheet of paper on which it is written. Questions 1 and 2 have an extra sheet for you to write your answer on it, while question 3 has two extra sheets for this purpose. Any part of your answer written on the wrong page will not be graded.
- There are 4 problems in total. Most questions have several parts. Make sure that you attempt them all.
- This is a closed book exam and no calculators are allowed.

Name:

ID \# :

Section Number :

$Q 1$	
$Q 2$	
$Q 3$	
$Q 4$	
TOTAL	

Problem 1

(15 points each) Solve the following IVPs:
i-

$$
y^{\prime}=y e^{x} \quad ; \quad y(0)=1
$$

ii-

$$
y^{\prime}=\frac{1}{\operatorname{Cos}(x+2 y+3)}-\frac{1}{2} \quad ; \quad y(-3)=0
$$

iii-

$$
y^{\prime \prime}+y=f(t) \quad ; \quad y(0)=0 \quad ; \quad y^{\prime}(0)=0
$$

where

$$
f(t)= \begin{cases}0 & 0 \leq t<\pi \\ 1 & \pi \leq t<2 \pi \\ 0 & 2 \pi \leq t\end{cases}
$$

iv-

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=1 \quad ; \quad y(0)=0 \quad ; \quad y^{\prime}(0)=\frac{1}{2} \quad ; \quad y^{\prime \prime}(0)=2
$$

[^0]ADDITIONAL SHEET FOR PROBLEM 1 ANSWER

Problem 2

(35 points) Find the 10 th, 11 th, 13 th and the 100 th coefficients of the series solution (centred at 0) of the following IVP (i.e. find the coefficients of $x^{10}, x^{11}, x^{13}, x^{100}$ of the power series solution of the IVP below)

$$
y^{\prime \prime}-2 x y+8 y=0 \quad ; \quad y(0)=1 \quad y^{\prime}(0)=1
$$

ADDITIONAL SHEET FOR PROBLEM 2 ANSWER

Problem 3

(20 points each) Solve the following IVPs:
i-

$$
\dot{\mathbf{X}}=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right) \mathbf{X} \quad ; \quad \mathbf{X}(0)=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
$$

ii-

$$
\begin{aligned}
\dot{x} & =y+\delta(t-1) \\
\dot{y} & =-x \\
x(0)=0 \quad & ; \quad y(0)=0
\end{aligned}
$$

ADDITIONAL SHEET FOR PROBLEM 3 ANSWER

ADDITIONAL SHEET FOR PROBLEM 3 ANSWER

Problem 4

(15 points) Is there a second-order, linear, ordinary differential equation such that both $y_{1}(x)=1$ and $y_{2}(x)=\operatorname{Sin}(x)$ are solutions of it? In other words, can you find two functions $P(x)$ and $Q(x)$ such that the equation:

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 ?
$$

has $y_{1}(x)$ and $y_{2}(x)$ as its solutions?
If yes, give an example. If no, provide a justifcation.

[^0]:

